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Further statistics in dentistry
Part 6: Multiple linear regression
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In order to introduce the concepts underlying multiple linear regression, it is
necessary to be familiar with and understand the basic theory of simple
linear regression on which it is based.
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● A review of simple linear regression 
● An explanation of the multiple linear regression model
● An assessment of the goodness-of-fit of the model and the effect of each explanatory

variable on outcome
● The choice of explanatory variables for an optimal model 
● An understanding of computer output in a multiple regression analysis
● The use of residuals to check the assumptions in a regression analysis
● A description of linear logistic regression analysis

I N  B R I E F

REVIEWING SIMPLE LINEAR REGRESSION
Simple linear regression analysis is concerned with
describing the linear relationship between a
dependent (outcome) variable, y, and single
explanatory (independent or predictor) variable, x.
Full details may be obtained from texts such as
Bulman and Osborn (1989),1 Chatterjee and
Price (1999)2 and Petrie and Sabin (2000).3

Suppose that each individual in a sample of
size n has a pair of values, one for x and one for
y; it is assumed that y depends on x, rather than
the other way round.  It is helpful to start by
plotting the data in a scatter diagram (Fig. 1a),
conventionally putting x on the horizontal axis
and y on the vertical axis. The resulting scatter of
the points will indicate whether or not a linear
relationship is sensible, and may pinpoint out-
liers which would distort the analysis. If appro-
priate, this linear relationship can be described
by an equation defining the line (Fig. 1b), the
regression of y on x, which is given by:

Y = α +  β x

This is estimated in the sample by:

Y = a + bx

where:
Y is the predicted value of the dependent vari-

able, y, for a particular value of the explana-
tory variable, x

a is the intercept of the estimated line (the

value of Y when x = 0), estimating the true
value, α, in the population

b is the slope, gradient or regression coeffi-
cient of the estimated line (the average
change in y for a unit change in x), estimat-
ing the true value, β, in the population.

The parameters which define the line, namely
the intercept (estimated by a, and often not of
inherent interest) and the slope (estimated by b)
need to be examined. In particular, standard
errors can be estimated, confidence intervals can
be determined for them, and, if required, the
confidence intervals for the points and/or the
line can be drawn. Interest is usually focused on
the slope of the line which determines the extent
to which y varies as x is increased. If the slope is
zero, then changing x has no effect on y, and
there is no linear relationship between the two
variables. A t-test can be used to test the null
hypothesis that the true slope is zero, the test 
statistic being: 

t = b
SE(b)

which approximately follows the t-distribution
on n–2 degrees of freedom. If a relationship
exists (ie there is a significant slope), the line can
be used to predict the value of the dependent
variable from a value of the explanatory variable
by substituting the latter value into the estimat-
ed equation. It must be remembered that the 
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estimated line is only valid in the range of values
for which there are observations on x and y.

The correlation coefficient is a measure of lin-
ear association between two variables. Its true
value in the population, ρ, is estimated in the
sample by r. The correlation coefficient takes a
value between and including minus one and plus
one, its sign denoting the direction of the slope of
the line. It is possible to perform a significance
test (Fig. 1a) on the null hypothesis that ρ = 0, the
situation in which there is no linear association
between the variables . Because of the mathemat-
ical relationship between the correlation coeffi-
cient and the slope of the regression line, if the
slope is significantly different from zero, then the
correlation coefficient will be too. However, this is
not to say that the line is a good ‘fit’ to the data
points as there may be considerable scatter about
the line even if the correlation coefficient is sig-
nificantly different from zero. Goodness-of-fit
can be investigated by calculating r2, the square
of the estimated correlation coefficient. It
describes the proportion of the variability of y
that can be attributed to or be explained by the
linear relationship between x and y; it is usually
multiplied by 100 and expressed as a percentage.
A subjective evaluation leads to a decision as to
whether or not the line is a good fit. For example,
a value of 61% (Fig. 1b) indicates that a substan-
tial percentage of the variability of y is explained
by the regression of y on x — only 39% is unex-
plained by the relationship — and such a line
would be regarded as a reasonably good fit. On
the other hand, if r2 = 0.25 then 75% of the vari-
ability of y is unexplained by the relationship, and
the line is a poor fit. 

THE MULTIPLE LINEAR REGRESSION
EQUATION
Multiple linear regression (usually simply called
multiple regression) may be regarded as an
extension to simple linear regression when

more than one explanatory variable is included
in the regression model. For each individual,
there is information on his or her values for the
outcome variable, y, and each of k, say, explana-
tory variables, x1 , x2, …, xk. Usually, focus is
centred on determining whether a particular
explanatory variable, xi, has a significant effect
on y after adjusting for the effects of the other
explanatory variables. Furthermore, it is possi-
ble to assess the joint effect of these k explana-
tory variables on y, by formulating an appropri-
ate model which can then be used to predict
values of y for a particular combination of
explanatory variables.

The multiple linear regression equation in the
population is described by the relationship:

Y =  α + β1 x1 + β2x2 + … + βk xk

This is estimated in the sample by:

Y = a + b1 x1 + b2 x2 + … + bk xk

where:
Y is the predicted value of the dependent vari-

able, y, for a particular set of values of
explanatory variables, x1, x2, …, xk.

a is a constant term (the ‘intercept’, the value
of Y when all the x’s are zero), estimating the
true value, α, in the population

bi is the estimated partial regression coefficient
(the average change in y for a unit change in
xi, adjusting for all the other x’s), estimating
the true value, βi, in the population. It is
usually simply called the regression coeffi-
cient. It will be different from the regression
coefficient obtained from the simple linear
regression of y on xi alone if the explanatory
variables are interrelated. The multiple
regression equation adjusts for the effects of
the explanatory variables, and this will only
be necessary if they are correlated. Note

Multiple linear
regression

• Study the effect 
on an outcome
variable, yy,, of
simultaneous
changes in a 
number of 
explanatory 
variables, 
xx1,  xx2, … xxkk

• Assess which of 
the explanatory
variables has a 
significant 
effect on yy

• Predict yy from 
xx1, xx2, … xxkk

Fig. 1a Scatter diagram showing the relationship between the mean
bleeding index per child and the mean plaque index per child in a
sample of 170 12-year-old schoolchildren (derived from data
kindly provided by Dr Gareth Griffiths of the Eastman Dental
Institute for Oral Health Care Sciences, University College London)
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Fig. 1b Estimated linear regression line of the mean bleeding index
against the mean plaque index using the data of Fig. 1a. Intercept,
a = 0.15; slope, b = 0.48 (95% CI = 0.42 to 0.54, P < 0.001),
indicating that the mean bleeding index increases on average by
0.48 as the mean plaque index increases by one
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that although the explanatory variables are
often called ‘independent’ variables, this
terminology gives a false impression, as the
explanatory variables are rarely independ-
ent of each other.

In this computer age, multiple regression is
rarely performed by hand, and so this paper does
not include formulae for the regression coeffi-
cients and their standard errors. If computer out-
put from a particular statistical package omits
confidence intervals for the coefficients, the
95% confidence interval for βi can be calculated
as bi ± t0.05 SE(bi), where t0.05 is the percentage
point of the t-distribution which corresponds to
a two-tailed probability of 0.05, and SE(bi) is the
estimated standard error of bi. 

COMPUTER OUTPUT IN A MULTIPLE
REGRESSION ANALYSIS
Being able to use the appropriate computer soft-
ware for a multiple regression analysis is usually
relatively easy, as long as it is possible to distin-
guish between the dependent and explanatory
variables, and the terminology is familiar. Know-
ing how to interpret the output may pose more of
a problem; different statistical packages produce
varying output, some more elaborate than others,
and it is essential that one is able to select those
results which are useful and can interpret them.

Goodness-of-fit
In simple linear regression, the square of the
correlation coefficient, r2, can be used to
measure the ‘goodness-of-fit’ of the model. r2

represents the proportion of the variability of
y that can be explained by its linear relation-
ship with x, a large value suggesting that the
model is a good fit. The approach used in mul-

tiple linear regression is similar to that in sim-
ple linear regression. A quantity, R2, some-
times called the coefficient of determination,
describes the proportion of the total variabili-
ty of y which is explained by the linear rela-
tionship of y on all the x’s, and gives an indi-
cation of the goodness-of-fit of a model.
However, it is inappropriate to compare the
values of R2 from multiple regression equa-
tions which have differing numbers of
explanatory variables, as the value of R2 will
be greater for those models which contain a
larger number of explanatory variables. So,
instead, an adjusted R2 value is used in these
circumstances. Assessing the goodness-of-fit
of a model is more important when the aim is
to use the regression model for prediction
than when it is used to assess the effect of
each of the explanatory variables on the out-
come variable.

The analysis of variance table
A comprehensive computer output from a multi-
ple regression analysis will include an analysis
of variance (ANOVA) table (Table 1). This is used
to assess whether at least one of the explanatory
variables has a significant linear relationship
with the dependent variable. The null hypothesis
is that all the partial regression coefficients in
the model are zero. The ANOVA table partitions
the total variance of the dependent variable, y,
into two components; that which is due to the
relationship of y with all the x’s, and that which is
left over afterwards, termed the residual variance.
These two variances are compared in the table by
calculating their ratio which follows the F-distri-
bution so that a P-value can be determined. If the
P-value is small (say, less than 0.05), it is unlikely
that the null hypothesis is true. 

Analysis of 
variance

The analysis of 
variance is used in
multiple regression
to test the hypothesis
that none of the
explanatory variables 
(xx1,  xx2, … xxkk) 
has a significant
effect on 
outcome (yy)

Table 1 Analysis of variance table for the regression analysis of OHQoL
Source of variation Sum of squares Degrees of freedom Mean square F P-value

Regression 3618.480 9 402.053 5.678 < 0.001

Residual 10693.073 151 70.815

Total 14311.553 160

Table 2 Results of multiple regression analysis with OHQoL as the dependent variable
95% Confidence

interval for regression 
Estimated coefficient coefficient    

Lower Upper
Model b Std. Error Test statistic P-value bound bound

(Constant) 52.583 4.734 11.108 < 0.001 43.230 61 .936

Gender (0 = F, 1 = M) –2.832 1.387 –2.041 0.043 –5.574 –0.091

Age (0 = under 55yrs, 1= 55yrs or more) 2.965 2.198 1.349 0.179 –1.378 7.307

Social class  (1=1,11,111NM, 2=111M, 1V, V) –3.282 1.542 –2.128 0.035 –6.329 –0.234

Toothache (0 = N, 1 = Y) –5.600 1.543 –3.629 < 0.001 –8.648 –2.551

Broken teeth (0 = N, 1 = Y) –2.526 1.554 –1.625 0.106 –5.596 0.544

Broken/ill fitting denture (0 = N, 1 = Y) –3.079 1.792 –1.719 0.088 –6.619 0.461

Sore or bleeding gums (0 = N, 1 = Y) in last year –1.791 1.540 –1.163 0.247 –4.834 1.252 

Loose teeth (0 = N, 1 = Y) –4.020 2.262 –1.777 0.078 –8.489 0.449

Tooth health (explained in the text) 0.079 0.038 2.106 0.037 0.005 0.153
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Assessing the effect of each explanatory
variable on outcome
If the result of the F-test from the analysis of
variance table is significant (ie typically if
P < 0.05), indicating that at least one of the
explanatory variables is independently associ-
ated with the outcome variable, it is necessary
to establish which of the variables is a useful
predictor of outcome. Each of the regression
coefficients in the model can be tested (the null
hypothesis is that the true coefficient is zero in
the population) using a test statistic which fol-
lows the t-distribution with n – k – 1 degrees of
freedom, where n is the sample size and k is the
number of explanatory variables in the model.
This test statistic is similar to that used in sim-
ple linear regression, ie it is the ratio of the esti-
mated coefficient to its standard error. Comput-
er output contains a table (Table 2) which
usually shows the constant term and estimated
partial regression coefficients (a and the b’s)
with their standard errors (with, perhaps, confi-
dence intervals for the true partial regression
coefficients), the test statistic for each coeffi-
cient, and the resulting P-value. From this
information, the multiple regression equation
can be formulated, and a decision made as to
which of the explanatory variables are signifi-
cantly independently associated with outcome.
A particular partial regression coefficient, b1
say, represents the average change in y for a
unit change in x1, after adjusting for the other
explanatory variables in the equation. If the
equation is required for prediction, then the
analysis can be re-run using only those vari-
ables which are significant, and a new multiple
regression equation created; this will probably
have partial regression coefficients which dif-
fer slightly from those of the original larger
model. 

Automatic model selection procedures
It is important, when choosing which explanato-
ry variables to include in a model, not to over-fit
the model by including too many of them.
Whilst explaining the data very well, an over-
fitted or, in particular, a saturated model (ie one
in which there are as many explanatory vari-
ables as individuals in the sample) is usually of
little use for predicting future outcomes. It is
generally accepted that a sensible model should
include no more than n/10 explanatory vari-
ables, where n is the number of individuals in
the sample. Put another way, there should be at
least ten times as many individuals in the sample
as variables in the model.

When there are only a limited number of
variables that are of interest, they are usually all
included in the model. The difficulty arises when
there are a relatively large number of potential
explanatory variables, all of which are scientifi-
cally reasonable, and it seems sensible to include
only some of them in the model. The most usual
approach is to establish which explanatory vari-
ables are significantly (perhaps at the 10% or
even 20% level rather than the more usual 5%

level) related to the outcome variable when each
is investigated separately, ignoring the other
explanatory variables in the study. Then only
these ‘significant’ variables are included in the
model. So, if the explanatory variable is binary,
this might involve performing a two-sample 
t-test to determine whether the mean value of
the outcome variable is different in the two cate-
gories of the explanatory variable. If the
explanatory variable is continuous, then a sig-
nificant slope in a simple linear regression
analysis would suggest that this variable should
be included in the multiple regression model. 

If the purpose of the multiple regression
analysis is to gain some understanding of the
relationship between the outcome and explana-
tory variables and an insight into the independ-
ent effects of each of the latter on the former,
then entering all relevant variables into the
model is the way to proceed. However, some-
times the purpose of the analysis is to obtain the
most appropriate model which can be used for
predicting the outcome variable. One approach
in this situation is to put all the relevant
explanatory variables into the model, observe
which are significant, and obtain a final con-
densed multiple regression model by re-running
the analysis using only these significant vari-
ables. The alternative approach is to use an
automatic selection procedure, offered by most
statistical packages, to select the optimal combi-
nation of explanatory variables in a prescribed
manner. In particular, one of the following pro-
cedures can be chosen:

• All subsets selection — every combination of
explanatory variables is investigated and that
which provides the best fit, as described by the
value of some criterion such as the adjusted
R2, is selected.

• Forwards (step-up) selection — the first step is
to create a simple model with one explanatory
variable which gives the best R2 when com-
pared with all other models with only one
variable. In the next step, a second variable is
added to the existing model if it is better than
any other variable at explaining the remain-
ing variability and produces a model which is
significantly better (according to some criteri-
on) than that in the previous step. This process
is repeated progressively until the addition of
a further variable does not significantly
improve the model.

• Backwards (step-down) selection — the first
step is to create the full model which includes
all the variables. The next step is to remove the
least significant variable from the model, and
retain this reduced model if it is not signifi-
cantly worse (according to some criterion)
than the model in the previous step. This
process is repeated progressively, stopping
when the removal of a variable is significantly
detrimental.

• Stepwise selection — this is a combination of
forwards and backwards selection. Essentially
it is forwards selection, but it allows variables

tt-test

A tt-test is used to
assess the evidence
that a particular
explanatory variable
(xxii ) has a significant
effect on outcome (yy)
after adjusting for
the effects of the
other explanatory
variables in the 
multiple regression
models
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which have been included in the model to be
removed, by checking that all of the included
variables are still required.

It is important to note that these automatic
selection procedures may lead to different
models, particularly if the explanatory vari-
ables are highly correlated ie when there is co-
linearity. In these circumstances, deciding on
the model can be problematic, and this may be
compounded by the fact that the resulting
models, although mathematically legitimate,
may not be sensible. It is crucial, therefore, to
apply common sense and be able to justify the
model in a biological and/or clinical context
when selecting the most appropriate model.

INCLUDING CATEGORICAL VARIABLES IN THE
MODEL
1. Categorical explanatory variables
It is possible to include categorical explanatory
variables in a multiple regression model. If the
explanatory variable is binary or dichotomous,
then a numerical code is chosen for the two
responses, typically 0 and 1. So for example, if
gender is one of the explanatory variables, then
females might be coded as 0 and males as 1.
This dummy variable is entered into the model
in the usual way as if it were a numerical vari-
able. The estimated partial regression coeffi-
cient for the dummy variable is interpreted as
the average change in y for a unit change in the
dummy variable, after adjusting for the other
explanatory variables in the model. Thus in the
example, it is difference in the estimated mean
values of y in males and females, a positive dif-
ference indicating that the mean is greater for
males than females.

If the two categories of the binary explanato-
ry variable represent different treatments, then
including this variable in the multiple regression
equation is a particular approach to what is
termed the analysis of covariance. Using a multi-
ple regression analysis, the effect of treatment
can be assessed on the outcome variable, after
adjusting for the other explanatory variables in
the model.

When the explanatory variable is qualitative
and it has more than two categories of response,
the process is more complicated. If the categories
can be assigned numerical codes on an interval
scale, such that the difference between any two
successive values can be interpreted in a con-
stant fashion (eg the difference between 2 and 3,
say, has the same meaning as the difference
between 5 and 6), then this variable can be treat-
ed as a numerical variable for the purposes of
multiple regression. The different categories of
social class are usually treated in this way. If, on
the other hand, the nominal qualitative variable
has more than two categories, and the codes
assigned to the different categories cannot be
interpreted in an arithmetic framework, then
handling this variable is more complex. (k –1)
binary dummy variables have to be created,
where k is the number of categories of the nomi-

nal variable. A baseline category is chosen
against which all of the other categories are
compared; then each dummy variable that is
created distinguishes one category of interest
from the baseline category. Knowing how to
code these dummy variables is not straightfor-
ward; details may be obtained from Armitage,
Berry and Matthews (2001).4

A binary dependent variable — logistic
regression
It is possible to formulate a linear model which
relates a number of explanatory variables to a
single binary dependent variable, such as treat-
ment outcome, classified as success or failure.
The right hand side of the equation defining the
model is similar to that of the multiple linear
regression equation. However, because the
dependent variable (a dummy variable typical-
ly coded as 0 for failure and 1 for success) is not
distributed Normally, and cannot be interpreted
if its predicted value is not 0 or 1, multiple
regression analysis cannot be sanctioned.
Instead, a particular transformation is taken of
the probability, p, of one of the two outcomes
of the dependent variable (say, a success); this
is called the logistic or logit transformation,
where logit(p) = loge[p/(1–p)]. A special itera-
tive process, called maximum likelihood, is
then used to estimate the coefficients of the
model instead of the ordinary least squares
approach used in multiple regression. This
results in an estimated multiple linear logistic
regression equation, usually abbreviated to
logistic regression, of the form:

Logit P = loge[P/(1–P)] = a + b1x1 + b2x2 + … + bkxk

where P is the predicted value of p, the
observed proportion of successes.

It is possible to perform significance tests on
the coefficients of the logistic equation to deter-
mine which of the explanatory variables are
important independent predictors of the out-
come of interest, say ‘success’. The estimated
coefficients, relevant confidence intervals, test
statistics and P-values are usually contained in a
table which is similar to that seen in a multiple
regression output. 

It is useful to note that the exponential of each
coefficient is interpreted as the odds ratio of the
outcome (eg success) when the value of the asso-
ciated explanatory variable is increased by one,
after adjusting for the other explanatory vari-
ables in the model. The odds ratio may be taken
as an estimate of the relative risk if the probabili-
ty of success is low. Odds ratios and relative risks
are discussed in Part 2 — Research Designs 2, an
earlier paper in this series. Thus, if a particular
explanatory variable represents treatment
(coded, for example, as 0 for the control treat-
ment and 1 for a novel treatment), then the expo-
nential of its coefficient in the logistic equation
represents the odds or relative risk of success (say
‘disease remission’) for the novel treatment com-
pared to the control treatment. A relative risk of

Logistic 
transformation

The logistic or logit
transformation of a
proportion, pp, is 
equal to loge[pp/(1–pp)]
where loge(pp ) 
represents the 
Naperian or natural
logarithm of pp to 
base e, where e is the
constant 2.71828 

Logistic 
regression

The logistic 
regression model
describes the 
relationship 
between a binary
outcome variable 
and a number of 
explanatory 
variables



PRACTICE

680 BRITISH DENTAL JOURNAL  VOLUME 193 NO. 12 DECEMBER 21 2002

one indicates that the two treatments are equally
effective, whilst if its value is two, say, the risk of
disease remission is twice as great on the novel
treatment as it is on the control treatment.

The logistic model can also be used to predict
the probability of success, say, for a particular
individual whose values are known for all the
explanatory variables. Furthermore, the per-
centages of individuals in the sample correctly
predicted by the model as successes and failures
can be shown in a classification table, as a way
of assessing  the extent to which the model can
be used for prediction. Further details can be
obtained in texts such as Kleinbaum (1994)5 and
Menard (1995).6

Checking the assumptions underlying a
regression analysis
It is important, both in simple and multiple
regression, to check the assumptions underlying
the regression analysis in order to ensure that
the model is valid. This stage is often overlooked
as most statistical software does not do this
automatically. The assumptions are most easily
expressed in terms of the residuals which are
determined by the computer program in the
process of a regression analysis. The residual for
each individual is the difference between his or
her observed value of y and the corresponding
fitted value, Y, obtained from the model.  The

assumptions are listed in the following bullet
points, and illustrated in the example at the end
of the paper:

• The residuals are Normally distributed. This is
most easily verified by eyeballing a histogram
of the residuals; this distribution should be
symmetrical around a mean of zero (Fig. 2a).

• The residuals have constant variability for all
the fitted values of y. This is most easily veri-
fied by plotting the residuals against the pre-
dicted values of y; the resulting plot should
produce a random scatter of points and should
not exhibit any funnel effect (Fig. 2b).

• The relationship between y and each of the
explanatory variables (there is only one x in
simple linear regression) is linear. This is most
easily verified by plotting the residuals
against the values of the explanatory variable;
the resulting plot should produce a random
scatter of points (Fig. 2c).

• The observations should be independent. This
assumption is satisfied if each individual in
the sample is represented only once (so that
there is one point per individual in the scatter
diagram in simple linear regression).

If all of the above assumptions are satis-
fied, the multiple regression equation can be
investigated further. If there is concern about
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Fig. 2 Diagrams, using
model residuals, for
assessing the
underlying assumptions
in the multiple
regression analysis
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the assumptions, the most important of which
are linearity and independence, a transforma-
tion can be taken of either y or of one or more
of the x’s, or both, and a new multiple regres-
sion equation determined. The assumptions
underlying this redefined model have to be
verified before proceeding with the multiple
regression analysis.

Example
A study assessed the impact of oral health on
the life quality of patients attending a primary
dental care practice, and identified the impor-
tant predictors of their oral health related
quality of life. The impact of oral health on life
quality was assessed using the UK oral health
related quality of life measure, obtained from a
sixteen-item questionnaire covering aspects of
physical, social and psychological health
(McGrath et al., 2000).7 The data relate to a
random sample of 161 patients selected from a
multi-surgery NHS dental practice. Oral health
quality of life score (OHQoL) was regressed on
the explanatory variables shown in Table 2
(page 677) with their relevant codings (‘tooth
health’ is a composite indicator of dental
health generated from attributing weights to
the status of the tooth: 0 = missing, 1 =
decayed, 2 = filled and 4 = sound).

The output obtained from the analysis
includes an analysis of variance table (Table 1,
page 677). The F-ratio obtained from this table
equals 5.68, with 9 degrees of freedom in the
numerator and 151 degrees of freedom in the
denominator. The associated P-value, P < 0.001,
indicates that there is substantial evidence to
reject the null hypothesis that all the partial
regression coefficients are equal to zero. Addi-
tional information from the output gives an
adjusted R2 = 0.208, indicating that approxi-
mately one fifth of the variability of OHQoL is
explained by its linear relationship with the
explanatory variables included in the model.
This implies that approximately 80% of the vari-
ation is unexplained by the model.

Incorporating the estimated regression coef-
ficients from Table 2 into an equation, gives the
following estimated multiple regression model:

OHQoL =  52.58 – 2.83gender + 2.97age –
3.28socialclass – 5.60toothache – 
2.53brokenteeth – 3.08baddenture – 
1.79sore – 4.02looseteeth + 0.079toothhealth

The estimated coefficients of the model can
be interpreted in the following fashion, using
both a binary variable (gender) and a numerical
variable (tooth health) as examples:

OHQoL is  2.8 less for males, on average, than it
is for females (ie it decreases by 2.8 when gen-
der increases by one unit, going from females
to males), after adjusting for all the other
explanatory variables in the model, and

OHQoL increases by 0.079 on average as the
tooth health score increases by one unit, after

adjusting for all the other explanatory vari-
ables in the model.

It can be seen from Table 2 that the coeffi-
cients that are significantly different from zero,
and therefore judged to be important independ-
ent predictors of OHQoL, are gender (males hav-
ing a lower mean OHQoL score than females),
social class (those in higher social classes having
a higher mean OHQoL score), tooth health (those
with a higher tooth health score having a higher
mean OHQoL score), and having a toothache in
the last year (those with toothache having a
lower mean OHQoL score than those with no
toothache). Whether or not the patient was older
or younger than 55 years, had or did not have a
poor denture, sore gums or loose teeth in the last
year were not significant (P > 0.05) independent
predictors of OHQoL.

The four components, a,b, c and d, of Figure 2
are used to test the underlying assumptions of
the model. In Figure 2a, it can be seen from the
histogram of the residuals that their distribution
is approximately Normal. When the residuals are
plotted against the predicted (ie fitted) values of
OHQoL (Fig. 2b), there is no tendency for the
residuals to increase or decrease with increasing
predicted values, indicating that the constant
variance assumption is satisfied. It should be
noted, furthermore, that the residuals are evenly
scattered above and below zero, demonstrating
that the mean of the residuals is zero. Figure 2c
shows the residuals plotted against the numeri-
cal explanatory variable, tooth health. Since
there is no systematic pattern for the residuals in
this diagram, this suggests that the relationship
between the two variables is linear. Finally, con-
sidering gender which is just one of the binary
explanatory variables, it can be seen from Fig.
2d that the distribution of the residuals is fairly
similar in males and females, suggesting that the
model fits equally well in the two groups. In fact,
similar patterns were seen for all the other
explanatory variables, when the residuals were
plotted against each of them. On the basis of
these results, it can be concluded that the
assumptions underlying the multiple regression
analysis are satisfied.

A logistic regression analysis was also per-
formed on this data set. The oral health quality of
life score was scored as ‘zero’ in those individuals
with values of less than or equal to 42 (the median
value in a 1999 national survey), and as ‘one’ if
their values were greater 42, the latter grouping
comprising individuals believed to have an
enhanced oral health related quality of life. The
outcome variable in the logistic regression was
then the logit of the proportion of individuals
with an enhanced oral health quality of life; the
explanatory variables were the same as those
used in the multiple regression analysis. Having a
toothache, a poorly fitting denture or loose teeth
in the last year as well as being of a lower social
class were the only variables which resulted in an
odds ratio of enhanced oral health quality of life
which was significantly less than one; no other
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coefficients in the model were significant. For
example, the estimated coefficient in the logistic
regression equation associated with toothache
was –1.84 (P < 0.001); therefore, the estimated
odds ratio for an enhanced oral health quality of
life was its exponential equal to 0.16 (95% confi-
dence interval 0.06 to 0.43). This suggests that the
odds of an enhanced oral health quality of life
was reduced by 84% in those suffering from a
toothache in the last year compared with those
not having a toothache, after taking all the other
variables in the model into account. 

It should be noted, however, that when the
response variable is really quantitative, it is gener-
ally better to try to find an appropriate multiple
regression equation rather than to dichotomise the
values of y and fit a logistic regression model. The
advantage of the logistic regression in this situa-
tion is that it may be easier to interpret the results
of the analysis if the outcome can be considered a
‘success’ or a ‘failure’, but dichotomising the val-
ues of y will lose information; furthermore, the

significance and values of the regression coeffi-
cients obtained from the logistic regression will
depend on the arbitrarily chosen cut-off used to
define ‘success’ and ‘failure’.

The authors would like to thank Dr Colman McGrath for
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